Forced convective head cooling device reduces human cross-sectional brain temperature measured by magnetic resonance: a non-randomized healthy volunteer pilot study.

نویسندگان

  • B A Harris
  • P J D Andrews
  • I Marshall
  • T M Robinson
  • G D Murray
چکیده

BACKGROUND This pilot study in five healthy adult humans forms the pre-clinical assessment of the effect of a forced convective head cooling device on intracranial temperature, measured non-invasively by magnetic resonance spectroscopy (MRS). METHODS After a 10 min baseline with no cooling, subjects received 30 min of head cooling followed by 30 min of head and neck cooling via a hood and neck collar delivering 14.5 degrees C air at 42.5 litre s(-1). Over baseline and at the end of both cooling periods, MRS was performed, using chemical shift imaging, to measure brain temperature simultaneously across a single slice of brain at the level of the basal ganglia. Oesophageal temperature was measured continuously using a fluoroptic thermometer. RESULTS MRS brain temperature was calculated for baseline and the last 10 min of each cooling period. The net brain temperature reduction with head cooling was 0.45 degrees C (SD 0.23 degrees C, P=0.01, 95% CI 0.17-0.74 degrees C) and with head and neck cooling was 0.37 degrees C (SD 0.30 degrees C, P=0.049, 95% CI 0.00-0.74 degrees C). The equivalent net reductions in oesophageal temperature were 0.16 degrees C (SD 0.04 degrees C) and 0.36 degrees C (SD 0.12 degrees C). Baseline-corrected brain temperature gradients from outer through intermediate to core voxels were not significant for either head cooling (P=0.43) or head and neck cooling (P=0.07), indicating that there was not a significant reduction in cooling with progressive depth into the brain. CONCLUSIONS Convective head cooling reduced MRS brain temperature and core brain was cooled.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measurement of human brain temperature changes during cooling

Introduction Therapeutic brain hypothermia is used with increasing frequency as a tool to mitigate neurologic injury [1]. It has been shown that moderate cooling of the brain after hypoxia-ischemia can reduce damage and improve functional outcome [2, 3]. Recently a new method for selective brain cooling was described and prototype device was tested on the pigs [4, 5]. Brain temperature decreasi...

متن کامل

Entropy generation analysis of MHD forced convective flow through a horizontal porous channel

Entropy generation due to viscous incompressible MHD forced convective dissipative fluid flow through a horizontal channel of finite depth in the existence of an inclined magnetic field and heat source effect has been examined. The governing non-linear partial differential equations for momentum, energy and entropy generation are derived and solved by using the analytical method. In addition; t...

متن کامل

Entropy Generation In an Unsteady MHD Channel Flow With Navier Slip and Asymmetric Convective Cooling

The combined effects of magnetic field, Navier slip and convective heating on the entropy generation in a flow of a viscous incompressible electrically conducting fluid between two infinite horizontal parallel plates under a constant pressure gradient have been examined. Both the lower and upper plates of the channel are subjected to asymmetric convective heat exchange with the ambient fluid. T...

متن کامل

The effect of selective head-neck cooling on physiological and cognitive functions in healthy volunteers

In general, brain temperatures are elevated during physical sporting activities; therefore, reducing brain temperature shortly after a sports-related concussion (SRC) could be a promising intervention technique. The main objective of this study was to examine the effects of head and neck cooling on physiological and cognitive function in normal healthy volunteers. Twelve healthy volunteers unde...

متن کامل

Sexual Dimorphism in Volume of the Cerebral Hemispheres and Lateral Ventricles in Schizophrenia Using Magnetic Resonance Imaging

Purpose: This study is designed to determine the sexual dimorphism pattern in volume of the cerebral hemispheres and lateral ventricles in schizophrenia using magnetic resonance imaging (MRI) and to compare it with normal sexual dimorphism pattern in healthy brains. Materials and Methods: This study is performed on 29 healthy volunteers (21 males, 8 females) and 29 patients suffered from schiz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • British journal of anaesthesia

دوره 100 3  شماره 

صفحات  -

تاریخ انتشار 2008